——金属线膨胀系数的测量
大学物理实验数据处理过程中,对于数据的分析、不确定度的计算,同学们往往觉得比较困难,容易计算错误。以下以《金属线膨胀系数的测量》的数据为例,提供了一个MATLAB程序来辅助同学们进行计算结果的验证,使计算结果更加的准确。
下面展示的是相关测量数据和计算结果以及相应的MATLAB代码:
1.测得数据
单次测量 |
Lo(室温下金属杆原长) |
lo(室温下千分表的读数) |
(mm) |
150.00 |
0.3312 |
次数 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
温度(℃) |
35.0 |
40.0 |
45.0 |
50.0 |
55.0 |
60.0 |
65.0 |
70.0 |
千分表读数(li/mm) |
0.3523 |
0.3621 |
0.3703 |
0.3934 |
0.4036 |
0.4192 |
0.4227 |
0.4398 |
2.MATLAB处理结果(附加程序)
clc
clear
% 初始化已知参数
A =0.1; % 请填写A的值
L0 = 150; % 请填写L0的初始值
l_values = [0.3523, 0.362, 0.3703, 0.3934, 0.4036, 0.4192, 0.4227, 0.4398];
t_values = [35,40,45,50,55,60,65,70]; % t1到t8的值,按顺序填写
% 步骤1:计算L
L = L0 + (l_values(1) - l_values(5));
% 步骤2:计算增量Δl和Δt
delta_l = [l_values(5) - l_values(1), l_values(6) - l_values(2), ...
l_values(7) - l_values(3), l_values(8) - l_values(4)];
delta_t = [t_values(5) - t_values(1), t_values(6) - t_values(2), ...
t_values(7) - t_values(3), t_values(8) - t_values(4)];
% 计算平均增量Δl和Δt
mean_delta_l = mean(delta_l);
mean_delta_t = mean(delta_t);
% 计算平均变化率alpha
alpha_bar = mean_delta_l / (L * mean_delta_t);
% 步骤3:计算不确定度
% 计算u_B(L), u_B(Δl), u_B(Δt)
uB_L = A / sqrt(3);
uB_delta_l = A / sqrt(3);
uB_delta_t = A / sqrt(3);
% 计算u_A(Δl)
uA_delta_l = sqrt(sum((delta_l - mean_delta_l).^2) / (4 * (4 - 1)));
% 合成不确定度 u_c(Δl) 和 u_c(Δt)
uC_delta_l = sqrt((uA_delta_l)^2 + (uB_delta_l)^2);
uC_delta_t = uB_delta_t;
% 初始化符号变量
syms mean_delta_l_sym L_sym mean_delta_t_sym
% 定义 alpha_bar (符号形式)
alpha_bar_sym = mean_delta_l_sym / (L_sym * mean_delta_t_sym);
% 计算 ln(alpha_bar)
ln_alpha_bar_sym = log(alpha_bar_sym);
% 计算 ln(alpha_bar) 对 mean_delta_l 的偏导数
d_ln_alpha_bar_d_mean_delta_l = diff(ln_alpha_bar_sym, mean_delta_l_sym);
% 计算 ln(alpha_bar) 对 L 的偏导数
d_ln_alpha_bar_d_L = diff(ln_alpha_bar_sym, L_sym);
% 计算 ln(alpha_bar) 对 mean_delta_t 的偏导数
d_ln_alpha_bar_d_mean_delta_t = diff(ln_alpha_bar_sym, mean_delta_t_sym);
% 计算 E_alpha
E_alpha = sqrt((-1/L)^2 * uB_L^2 + ...
(mean_delta_l)^2 * uC_delta_l^2 + ...
(-1/mean_delta_t)^2 * uC_delta_t^2);
% 计算 u_c(alpha)
uC_alpha = E_alpha * alpha_bar;
% 计算 U_p(alpha)
k = 2; % 覆盖因子
UP_alpha = k * uC_alpha;
% 确保替换符号变量为数值
mean_delta_l = mean(delta_l);
L = L0 + (l_values(1) - l_values(5));
mean_delta_t = mean(delta_t);
% 替换 UP_alpha 中的符号变量
UP_alpha = subs(UP_alpha, ...
[mean_delta_l_sym, L_sym, mean_delta_t_sym], ...
[mean_delta_l, L, mean_delta_t]);
% 转换为数值
UP_alpha = double(UP_alpha);
% 同样处理 alpha_bar 如果它也是符号变量
alpha_bar = subs(alpha_bar, ...
[mean_delta_l_sym, L_sym, mean_delta_t_sym], ...
[mean_delta_l, L, mean_delta_t]);
alpha_bar = double(alpha_bar);
% 格式化输出
result = sprintf('α = %.8f ± %.8f', alpha_bar, UP_alpha);
% 输出结果
disp('相对不确定度 E_alpha 为:');
disp(E_alpha);
disp('扩展不确定度 U_P(α) 为:');
disp(UP_alpha);
% 最终结果表示
disp('最终结果为:');
disp(['a = ' num2str(alpha_bar) ' ± ' num2str(UP_alpha)]);